
Hypergraph Analysis Toolbox
Release 0.0.1

Joshua Pickard

Sep 24, 2023

CONTENTS:

1 Introduction 3
1.1 Contributors . 3

2 Indices and tables 17

Python Module Index 19

Index 21

i

ii

Hypergraph Analysis Toolbox, Release 0.0.1

CONTENTS: 1

Hypergraph Analysis Toolbox, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Hypergraph Analysis Toolbox (HAT) is a software suite for the analysis and visualization of hypergraphs and higher
order structures. Motivated to investigate Pore-C data, HAT is intended as a general prupose, versatile software for
hypergraph construction, visualization, and analysis. HAT addresses the following hypergraph problems:

1. Construction

2. Visualization

3. Expansion and numeric representation

4. Structral Properties

5. Controllability

6. Similarity Measures

The capabilities and use cases of HAT are outlined in this notice.

1.1 Contributors

Joshua Pickard, Can Chen, Rahmy Salman, Cooper Stansbury, Sion Kim, Amit Surana, Anthony Bloch, and Indika
Rajapakse

1.1.1 Bug Reporting

Please report all bugs or defects in HAT to this page.

Installation

An instillation guide for the MATLAB, Python, and Development versions of HAT is available here.

3

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011190
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues

Hypergraph Analysis Toolbox, Release 0.0.1

Python Distribution

The Python distribution of HAT may be installed through pip:

>> pip install HypergraphAnalysisToolbox

Once installed, HAT may be imported into the Python environment with the command:

import HAT

The Python distribution has the following dependencies:

1. numpy

2. scipy

3. matplotlib

4. itertools

5. networkx

MATLAB Distribution

The MATLAB distribution of HAT can be installed through either the MATLAB Central. A MathWorks .mltbx file
can be downloaded from the site, and installed through the add on manager in the MATLAB Home environment. Once
installed as a toolbox, you will have access to all HAT functionality.

The MATLAB distribution has the following dependencies which need to be installed separately:

1. TenEig —Tensor Eigenpairs Solver

Development Distribution

All implementations of HAT are managed through a common git repository. This is public, so it may be cloned and
modified. If interested in modifying or contributing to HAT, please see information on the Development page and
contact Joshua Pickard at jpic@umich.edu.

Bug Reporting

Please report all bugs or defects in HAT to this page.

Tutorials

This page contains a series of tutorials for using HAT. Every tutorial is available in both Python and MATLAB.

4 Chapter 1. Introduction

https://pypi.org/project/HypergraphAnalysisToolbox/
https://www.mathworks.com/matlabcentral/fileexchange/121013-hypergraph-analysis-toolbox
https://users.math.msu.edu/users/chenlipi/teneig.html
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox
mailto:jpic@umich.edu
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues

Hypergraph Analysis Toolbox, Release 0.0.1

Python

Each Python tutorial open as a Google CoLab notebook and can be run online. You need to be logged into a google
account in order to access the notebooks. The links below may open to seemingly large .txt documents, in which case
there will be a button near the top to open the links in CoLab. Additionally, the tutorials can be downloaded from the
links and run locally as a jupyter notebook as well.

1. Introduction to HAT in Python

2. Constructing Hypergraphs from Multicorrealtions

MATLAB

Each MATLAB tutorial opens to MATLAB Online. If you have a MATLAB account you can run it online. Otherwise,
you can download the tutorial file from MATLAB Online and run it as a live script locally.

1. Introduction to HAT in MATLAB

2. Constructing Hypergraphs from Multicorrealtions

Bug Reporting

Please report all bugs or defects in HAT to this page.

HAT Documentation

Submodules

HAT.Hypergraph module

class HAT.Hypergraph.Hypergraph(im, ew=None, nw=None)
Bases: object

This is the base class representing a Hypergraph object. It is the primary entry point and provides an interface
to functions implemented in HAT’s other modules. The underlying data structure of this class is an incidence
matrix, but many methods exploit tensor representation of uniform hypergraphs.

Formally, a Hypergraph 𝐻 = (𝑉,𝐸) is a set of vertices 𝑉 and a set of edges 𝐸 where each edge 𝑒 ∈ 𝐸 is defined
𝑒 ⊆ 𝑉. In contrast to a graph, a hypergraph edge 𝑒 can contain any number of vertices, which allows for efficient
representation of multi-way relationships.

In a uniform Hypergraph, all edges contain the same number of vertices. Uniform hypergraphs are represnted as
tensors, which precisely model multi-way interactions.

Parameters

• im – Incidence matrix

• ew – Edge weight vector

• nw – Node weight vector

draw(shadeRows=True, connectNodes=True, dpi=200, edgeColors=None)
This function draws the incidence matrix of the hypergraph object. It calls the function HAT.draw.
incidencePlot, but is provided to generate the plot directly from the object.

1.1. Contributors 5

https://drive.google.com/file/d/17zxsB8kW8-bjJUGyXGm9vxDzYrIQa7mW/view?usp=share_link
https://drive.google.com/file/d/1m4fYOhRrYYgT1wFGwY9SPcMXXk2aqQTR/view?usp=share_link
https://drive.matlab.com/sharing/7d77b042-c3cb-4ae9-8c06-515089fbccef
https://drive.matlab.com/sharing/999692ae-26df-4b34-9cd4-c31af10d0bc3
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues

Hypergraph Analysis Toolbox, Release 0.0.1

Parameters

• shadeRows – shade rows (bool)

• connectNodes – connect nodes in each hyperedge (bool)

• dpi – the resolution of the image (int)

• edgeColors – The colors of edges represented in the incidence matrix. This is random by
default

Returns
matplotlib axes with figure drawn on to it

dual()

The dual hypergraph is constructed.

Returns
Hypergraph object

Return type
Hypergraph

Let 𝐻 = (𝑉,𝐸) be a hypergraph. In the dual hypergraph each original edge 𝑒 ∈ 𝐸 is represented as a
vertex and each original vertex 𝑣 ∈ 𝐸 is represented as an edge. Numerically, the transpose of the incidence
matrix of a hypergraph is the incidence matrix of the dual hypergraph.

References

cliqueGraph()

The clique expansion graph is constructed.

Returns
Clique expanded graph

Return type
networkx.graph

The clique expansion algorithm constructs a graph on the same set of vertices as the hypergraph by defining
an edge set where every pair of vertices contained within the same edge in the hypergraph have an edge
between them in the graph. Given a hypergraph 𝐻 = (𝑉,𝐸ℎ), then the corresponding clique graph is
𝐶 = (𝑉,𝐸𝑐) where 𝐸𝑐 is defined

𝐸𝑐 = {(𝑣𝑖, 𝑣𝑗)| ∃ 𝑒 ∈ 𝐸ℎ where 𝑣𝑖, 𝑣𝑗 ∈ 𝑒}.

This is called clique expansion because the vertices contained in each ℎ ∈ 𝐸ℎ forms a clique in𝐶. While the
map from 𝐻 to 𝐶 is well-defined, the transformation to a clique graph is a lossy process, so the hypergraph
structure of 𝐻 cannot be uniquely recovered from the clique graph 𝐶 alone [1].

References

lineGraph()

The line graph, which is the clique expansion of the dual graph, is constructed.

Returns
Line graph

Return type
networkx.graph

6 Chapter 1. Introduction

Hypergraph Analysis Toolbox, Release 0.0.1

References

starGraph()

The star graph representation is constructed.

Returns
Star graph

Return type
networkx.graph

The star expansion of 𝐻 = (𝑉,𝐸ℎ) constructs a bipartite graph 𝑆 = {𝑉𝑠, 𝐸𝑠} by introducing a new set of
vertices 𝑉𝑠 = 𝑉 ∪𝐸ℎ where some vertices in the star graph represent hyperedges of the original hypergraph.
There exists an edge between each vertex 𝑣, 𝑒 ∈ 𝑉𝑠 when 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸ℎ, and 𝑣 ∈ 𝑒. Each hyperedge in
𝐸ℎ induces a star in 𝑆. This is a lossless process, so the hypergraph structure of 𝐻 is well-defined] given
a star graph 𝑆.

References

laplacianMatrix(type='Bolla')
This function returns a version of the higher order Laplacian matrix of the hypergraph.

Parameters
type (str, optional) – Indicates which version of the Laplacin matrix to return. It defaults
to Bolla [1], but Rodriguez [2,3] and Zhou [4] are valid arguments as well.

Returns
Laplacian matrix

Return type
ndarray

Several version of the hypergraph Laplacian are defined in [1-4]. These aim to capture the higher order
structure as a matrix. This function serves as a wrapper to call functions that generate different specific
Laplacians (See bollaLaplacian(), rodriguezLaplacian(), and zhouLaplacian()).

References

bollaLaplacian()

This function constructs the hypergraph Laplacian according to [1].

Returns
Bolla Laplacian matrix

Return type
ndarray

1.1. Contributors 7

Hypergraph Analysis Toolbox, Release 0.0.1

References

rodriguezLaplacian()

This function constructs the hypergraph Laplacian according to [1, 2].

Returns
Rodriguez Laplacian matrix

Return type
ndarray

References

zhouLaplacian()

This function constructs the hypergraph Laplacian according to [1].

Returns
Zhou Laplacian matrix

Return type
ndarray

References

adjTensor()

This constructs the adjacency tensor for uniform hypergraphs.

Returns
Adjacency Tensor

Return type
ndarray

The adjacency tensor 𝐴 of a 𝑘 − ‘𝑜𝑟𝑑𝑒𝑟ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑎𝑝ℎ : 𝑚𝑎𝑡ℎ : ‘𝐻 is the multi-way, hypergraph analog of
the pairwise, graph adjacency matrix. It is defined as a 𝑘− mode tensor (𝑘− dimensional matrix):

𝐴 ∈ R

𝑘 times⏞ ⏟
𝑛× · · · × 𝑛 where 𝐴𝑗1...𝑗𝑘 =

{︃
1

(𝑘−1)! if (𝑗1, . . . , 𝑗𝑘) ∈ 𝐸ℎ

0 otherwise
,

as found in equation 8 of [1].

References

degreeTensor()

This constructs the degree tensor for uniform hypergraphs.

Returns
Degree Tensor

Return type
ndarray

The degree tensor𝐷 is the hypergraph analog of the degree matrix. For a 𝑘− order hypergraph𝐻 = (𝑉,𝐸)
the degree tensor 𝐷 is a diagonal supersymmetric tensor defined

𝐷 ∈ R

𝑘 times⏞ ⏟
𝑛× · · · × 𝑛 where 𝐷𝑖...𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) for all 𝑣𝑖 ∈ 𝑉

8 Chapter 1. Introduction

Hypergraph Analysis Toolbox, Release 0.0.1

References

laplacianTensor()

This constructs the Laplacian tensor for uniform hypergraphs.

Returns
Laplcian Tensor

Return type
ndarray

The Laplacian tensor is the tensor analog of the Laplacian matrix for graphs, and it is defined equivalently.
For a hypergraph 𝐻 = (𝑉,𝐸) with an adjacency tensor 𝐴 and degree tensor 𝐷, the Laplacian tensor is

𝐿 = 𝐷 −𝐴

References

tensorEntropy()

Computes hypergraph entropy based on the singular values of the Laplacian tensor.

Returns
tensor entropy

Return type
float

Uniform hypergraph entropy is defined as the entropy of the higher order singular values of the Laplacian
matrix [1].

References

matrixEntropy(type='Rodriguez')
Computes hypergraph entropy based on the eigenvalues values of the Laplacian matrix.

Parameters
type (str, optional) – Type of hypergraph Laplacian matrix. This defaults to ‘Rodriguez’ and
other choices inclue Bolla and Zhou (See: laplacianMatrix()).

Returns
Matrix based hypergraph entropy

Return type
float

Matrix entropy of a hypergraph is defined as the entropy of the eigenvalues of the hypergraph Laplacian
matrix [1]. This may be applied to any version of the Laplacian matrix.

1.1. Contributors 9

Hypergraph Analysis Toolbox, Release 0.0.1

References

avgDistance()

Computes the average pairwise distance between any 2 vertices in the hypergraph.

Returns
avgDist

Return type
float

The hypergraph is clique expanded to a graph object, and the average shortest path on the clique expanded
graph is returned.

ctrbk(inputVxc)
Compute the reduced controllability matrix for 𝑘− uniform hypergraphs.

Parameters
inputVxc (ndarray) – List of vertices that may be controlled

Returns
Controllability matrix

Return type
ndarray

References

bMatrix(inputVxc)
Constructs controllability 𝐵 matrix commonly used in the linear control system

𝑑𝑥

𝑑𝑡
= 𝐴𝑥+𝐵𝑢

Parameters
inputVxc (ndarray) – a list of input control nodes

Returns
control matrix

Return type
ndarray

References

clusteringCoef()

Computes clustering average clustering coefficient of the hypergraph.

Returns
average clustering coefficient

Return type
float

For a uniform hypergraph, the clustering coefficient of a vertex 𝑣𝑖 is defined as the number of edges the ver-
tex participates in (i.e. 𝑑𝑒𝑔(𝑣𝑖)) divided by the number of 𝑘 − ‘𝑤𝑎𝑦𝑒𝑑𝑔𝑒𝑠𝑡ℎ𝑎𝑡𝑐𝑜𝑢𝑙𝑑𝑒𝑥𝑖𝑠𝑡𝑎𝑚𝑜𝑛𝑔𝑣𝑒𝑟𝑡𝑒𝑥 :
𝑚𝑎𝑡ℎ : ‘𝑣𝑖 and its neighbors (See equation 31 in [1]). This is written

𝐶𝑖 =
𝑑𝑒𝑔(𝑣𝑖)(︀|𝑁𝑖|

𝑘

)︀
10 Chapter 1. Introduction

Hypergraph Analysis Toolbox, Release 0.0.1

where 𝑁𝑖 is the set of neighbors or vertices adjacent to 𝑣𝑖. The hypergraph clustering coefficient computed
here is the average clustering coefficient for all vertices, written

𝐶 =

𝑛∑︁
𝑖=1

𝐶𝑖

References

centrality(tol=0.0001, maxIter=3000, model='LogExp', alpha=10)
Computes node and edge centralities.

Parameters

• tol (int, optional) – threshold tolerance for the convergence of the centrality measures,
defaults to 1e-4

• maxIter (int, optional) – maximum number of iterations for the centrality measures
to converge in, defaults to 3000

• model (str, optional) – the set of functions used to compute centrality. This defaults to
‘LogExp’, and other choices include ‘Linear’, ‘Max’ or a list of 4 custom function handles
(See [1]).

• alpha (int, optional) – Hyperparameter used for computing centrality (See [1]), de-
faults to 10

Returns
vxcCentrality

Return type
ndarray containing centrality scores for each vertex in the hypergraph

Returns
edgeCentrality

Return type
ndarray containing centrality scores for each edge in the hypergraph

References

HAT.HAT module

HAT.HAT.directSimilarity(HG1, HG2, measure='Hamming')
This function computes the direct similarity between two uniform hypergraphs.

Parameters

• HG1 (Hypergraph) – Hypergraph 1

• HG2 (Hypergraph) – Hypergraph 2

• measure (str, optional) – This sepcifies which similarity measure to apply. It defaults
to Hamming, and Spectral-S and Centrality are available as other options as well.

Returns
Hypergraph similarity

Return type
float

1.1. Contributors 11

Hypergraph Analysis Toolbox, Release 0.0.1

References

HAT.HAT.indirectSimilarity(G1, G2, measure='Hamming', eps=0.01)
This function computes the indirect similarity between two hypergraphs.

Parameters

• G1 (nx.Graph or ndarray) – Hypergraph 1 expansion

• G2 (nx.Graph or ndarray) – Hypergraph 2 expansion

• measure (str, optional) – This specifies which similarity measure to apply. It defaults to
Hamming , and Jaccard , deltaCon , Spectral , and Centrality are provided as well.
When Centrality is used as the similarity measure, G1 and G2 should ndarray s of cen-
trality values; Otherwise G1 and G2 are nx.Graph*s or *ndarray* s as adjacency matrices.

• eps (float, optional) – a hyperparameter required for deltaCon similarity, defaults to 10e-3

Returns
similarity measure

Return type
float

References

HAT.HAT.multicorrelations(D, order, mtype='Drezner', idxs=None)
This function computes the multicorrelation among pairwise or 2D data.

Parameters

• D (ndarray) – 2D or pairwise data

• order (int) – order of the multi-way interactions

• mtype (str) – This specifies which multicorrelation measure to use. It defaults to Drezner
[1], but Wang [2] and Taylor [3] are options as well.

• idxs (ndarray, optional) – specify which indices of D to compute multicorrelations of. The
default is None, in which case all combinations of order indices are computed.

Returns
A vector of the multicorrelation scores computed and a vector of the column indices of D used
to compute each multicorrelation.

Return type
(ndarray, ndarray)

References

HAT.HAT.uniformErdosRenyi(v, e, k)
This function generates a uniform, random hypergraph.

Parameters

• v (int) – number of vertices

• e (int) – number of edges

• k (int) – order of hypergraph

12 Chapter 1. Introduction

Hypergraph Analysis Toolbox, Release 0.0.1

Returns
Hypergraph

Return type
Hypergraph

HAT.HAT.load(dataset='Karate')
This function loads built-in datasets. Currently only one dataset is available and we are working to expand this.

Parameters
dataset (str, optional) – sets which dataset to load in, defaults to ‘Karate’

Returns
incidence matrix or graph object

Return type
ndarray or nx.Graph

HAT.HAT.hyperedges2IM(edgeSet)
This function constructs an incidence matrix from an edge set.

Parameters
edgeSet (ndarray) – a 𝑒×𝑘 matrix where each row contains 𝑘 integers that are contained within
the same hyperedge

Returns
a 𝑛𝑖𝑚𝑒𝑠𝑒 incidence matrix where each row of the edge set corresponds to a column of the inci-
dence matrix. 𝑛 is the number of nodes contained in the edgeset.

Return type
ndarray

HAT.HAT.hyperedgeHomophily(H, HG=None, G=None, method='CN')
This function computes the hyperedge homophily score according to the below methods. The homophily score
is the average score based on structural similarity of the vertices in hypredge H in the clique expanded graph G.
This function is an interface from HAT to networkx link prediction algorithms.

Parameters

• G (networkx.Graph) – a pairwise hypergraph expansion

• H (ndarray) – hyperedge containing individual vertices within the edge

• method – specifies which structural similarity method to use. This defaults to CN common
neighbors.

HAT.HAT.edgeRemoval(HG, p, method='Random')

This function randomly removes edges from a hypergraph. In [1], four primary reasons are given for
data missing in pairwise networks:

1. random edge removal

2. right censoring

3. snowball effect

4. cold-ends

This method removes edes from hypergraphs according to the multi-way analogue of these.

1.1. Contributors 13

Hypergraph Analysis Toolbox, Release 0.0.1

References

HAT.HAT.randomRemoval(HG, p)

HAT.HAT.rightCensorRemoval(HG, p)

HAT.HAT.coldEndsRemoval(HG, p)

HAT.HAT.snowBallRemoval(HG, p)

HAT.draw module

HAT.draw.incidencePlot(H, shadeRows=True, connectNodes=True, dpi=200, edgeColors=None)
Plot the incidence matrix of a hypergraph.

Parameters

• H – a HAT.hypergraph object

• shadeRows – shade rows (bool)

• connectNodes – connect nodes in each hyperedge (bool)

• dpi – the resolution of the image (int)

• edgeColors – The colors of edges represented in the incidence matrix. This is random by
default

Returns
matplotlib axes with figure drawn on to it

HAT.multilinalg module

HAT.multilinalg.hosvd(T, M=True, uniform=False, sym=False)
Higher Order Singular Value Decomposition

Parameters

• uniform – Indicates if T is a uniform tensor

• sym – Indicates if T is a super symmetric tensor

• M – Indicates if the factor matrices are required as well as the core tensor

Returns
The singular values of the core diagonal tensor and the factor matrices.

HAT.multilinalg.supersymHosvd(T)
Computes the singular values of a uniform, symetric tensor. See Algorithm 1 in [1].

Parameters
T – A uniform, symmetric multidimensional array

Returns
The singular values that compose the core tensor of the HOSVD on T.

14 Chapter 1. Introduction

Hypergraph Analysis Toolbox, Release 0.0.1

References

HAT.multilinalg.HammingSimilarity(A1, A2)
Computes the Spectral-S similarity of 2 Adjacency tensors [1].

Parameters

• A1 (ndarray) – adjacency tensor 1

• A2 (ndarray) – adjacency tensor 2

Returns
Hamming similarity measure

Return type
float

References

HAT.multilinalg.SpectralHSimilarity(L1, L2)
Computes the Spectral-S similarity of 2 Laplacian tensors [1].

Parameters

• L1 (ndarray) – Laplacian tensor 1

• L2 (ndarray) – Laplacian tensor 2

Returns
Spectral-S similarity measure

Return type
float

References

HAT.multilinalg.kronExponentiation(M, x)
Kronecker Product Exponential.

Parameters

• M (ndarray) – a matrix

• x (int) – power of exponentiation

Returns
Krnoecker Product exponentiation of M a total of x times

Return type
ndarray

This function performs the Kronecker Product on a matrix𝑀 a total of 𝑥 times. The Kronecker product is defined
for two matrices 𝐴 ∈ R𝑙×𝑚, 𝐵 ∈ R𝑚×𝑛 as the matrix

𝐴
⨂︁

𝐵 =

⎛⎜⎜⎜⎝
𝐴1,1𝐵 𝐴1,2𝐵 . . . 𝐴1,𝑚𝐵
𝐴2,1𝐵 𝐴2,2𝐵 . . . 𝐴2,𝑚𝐵

...
...

. . .
...

𝐴𝑙,1𝐵 𝐴𝑙,2𝐵 . . . 𝐴𝑙,𝑛𝐵

⎞⎟⎟⎟⎠

1.1. Contributors 15

Hypergraph Analysis Toolbox, Release 0.0.1

Bug Reporting

Please report all bugs or defects in HAT to this page.

Hypergraph References

Bug Reporting

Please report all bugs or defects in HAT to this page.

Development

This page contains the goals for the next version of HAT. To contribute, for information on the below, or to request
specific features in HAT, please contact us at jpic@umich.edu

Software Development

1. Automated testing of software

2. Increased number of tutorial

3. Increased number of hypergraph visualization methods

4. Add hyperlink prediction module

5. Include built-in hypergraphs

Hypergraph Methods Development

1. Directed hypergraphs

2. Nonuniform hypergraphs

3. Large hypergraph constructions

Bug Reporting

Please report all bugs or defects in HAT to this page.

16 Chapter 1. Introduction

https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues
mailto:jpic@umich.edu
https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

17

Hypergraph Analysis Toolbox, Release 0.0.1

18 Chapter 2. Indices and tables

PYTHON MODULE INDEX

h
HAT.draw, 14
HAT.HAT, 11
HAT.Hypergraph, 5
HAT.multilinalg, 14

19

Hypergraph Analysis Toolbox, Release 0.0.1

20 Python Module Index

INDEX

A
adjTensor() (HAT.Hypergraph.Hypergraph method), 8
avgDistance() (HAT.Hypergraph.Hypergraph

method), 10

B
bMatrix() (HAT.Hypergraph.Hypergraph method), 10
bollaLaplacian() (HAT.Hypergraph.Hypergraph

method), 7

C
centrality() (HAT.Hypergraph.Hypergraph method),

11
cliqueGraph() (HAT.Hypergraph.Hypergraph

method), 6
clusteringCoef() (HAT.Hypergraph.Hypergraph

method), 10
coldEndsRemoval() (in module HAT.HAT), 14
ctrbk() (HAT.Hypergraph.Hypergraph method), 10

D
degreeTensor() (HAT.Hypergraph.Hypergraph

method), 8
directSimilarity() (in module HAT.HAT), 11
draw() (HAT.Hypergraph.Hypergraph method), 5
dual() (HAT.Hypergraph.Hypergraph method), 6

E
edgeRemoval() (in module HAT.HAT), 13

H
HammingSimilarity() (in module HAT.multilinalg), 15
HAT.draw

module, 14
HAT.HAT
module, 11

HAT.Hypergraph
module, 5

HAT.multilinalg
module, 14

hosvd() (in module HAT.multilinalg), 14

hyperedgeHomophily() (in module HAT.HAT), 13
hyperedges2IM() (in module HAT.HAT), 13
Hypergraph (class in HAT.Hypergraph), 5

I
incidencePlot() (in module HAT.draw), 14
indirectSimilarity() (in module HAT.HAT), 12

K
kronExponentiation() (in module HAT.multilinalg),

15

L
laplacianMatrix() (HAT.Hypergraph.Hypergraph

method), 7
laplacianTensor() (HAT.Hypergraph.Hypergraph

method), 9
lineGraph() (HAT.Hypergraph.Hypergraph method), 6
load() (in module HAT.HAT), 13

M
matrixEntropy() (HAT.Hypergraph.Hypergraph

method), 9
module

HAT.draw, 14
HAT.HAT, 11
HAT.Hypergraph, 5
HAT.multilinalg, 14

multicorrelations() (in module HAT.HAT), 12

R
randomRemoval() (in module HAT.HAT), 14
rightCensorRemoval() (in module HAT.HAT), 14
rodriguezLaplacian() (HAT.Hypergraph.Hypergraph

method), 8

S
snowBallRemoval() (in module HAT.HAT), 14
SpectralHSimilarity() (in module HAT.multilinalg),

15
starGraph() (HAT.Hypergraph.Hypergraph method), 7

21

Hypergraph Analysis Toolbox, Release 0.0.1

supersymHosvd() (in module HAT.multilinalg), 14

T
tensorEntropy() (HAT.Hypergraph.Hypergraph

method), 9

U
uniformErdosRenyi() (in module HAT.HAT), 12

Z
zhouLaplacian() (HAT.Hypergraph.Hypergraph

method), 8

22 Index

	Introduction
	Contributors
	Bug Reporting
	Installation
	Python Distribution
	MATLAB Distribution
	Development Distribution
	Bug Reporting

	Tutorials
	Python
	MATLAB
	Bug Reporting

	HAT Documentation
	Submodules
	HAT.Hypergraph module
	HAT.HAT module
	HAT.draw module
	HAT.multilinalg module
	Bug Reporting

	Hypergraph References
	Bug Reporting

	Development
	Software Development
	Hypergraph Methods Development
	Bug Reporting

	Indices and tables
	Python Module Index
	Index

