

Hypergraph Analysis Toolbox

[image: _images/index_dyadic_decomp.png]

Introduction

Hypergraph Analysis Toolbox (HAT) is a software suite for the analysis and visualization of hypergraphs and
higher order structures. Motivated to investigate Pore-C data, HAT is intended as a general prupose, versatile
software for hypergraph construction, visualization, and analysis. HAT addresses the following hypergraph
problems:

	Construction

	Visualization

	Expansion and numeric representation

	Structral Properties

	Controllability

	Similarity Measures

The capabilities and use cases of HAT are outlined in this notice [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011190].

Contributors

Joshua Pickard, Can Chen, Rahmy Salman, Cooper Stansbury, Sion Kim, Amit Surana, Anthony Bloch, and Indika Rajapakse

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

Contents:

	Installation
	Python Distribution

	MATLAB Distribution

	Development Distribution

	Tutorials
	Python

	MATLAB

	HAT Documentation
	Submodules

	HAT.Hypergraph module

	HAT.HAT module

	HAT.draw module

	HAT.multilinalg module

	Bug Reporting

	Hypergraph References
	Bug Reporting

	Development
	Software Development

	Hypergraph Methods Development

Indices and tables

	Index

	Module Index

	Search Page

Installation

An instillation guide for the MATLAB, Python, and Development versions of HAT is available here.

Python Distribution

The Python distribution [https://pypi.org/project/HypergraphAnalysisToolbox/] of HAT may be installed through pip:

>> pip install HypergraphAnalysisToolbox

Once installed, HAT may be imported into the Python environment with the command:

import HAT

The Python distribution has the following dependencies:

	numpy

	scipy

	matplotlib

	itertools

	networkx

MATLAB Distribution

The MATLAB distribution of HAT can be installed through either the MATLAB Central [https://www.mathworks.com/matlabcentral/fileexchange/121013-hypergraph-analysis-toolbox]. A MathWorks .mltbx file can be downloaded from the site,
and installed through the add on manager in the MATLAB Home environment. Once installed as a toolbox, you will have access to all HAT functionality.

The MATLAB distribution has the following dependencies which need to be installed separately:

	TenEig — Tensor Eigenpairs Solver [https://users.math.msu.edu/users/chenlipi/teneig.html]

Development Distribution

All implementations of HAT are managed through a common git repository [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox]. This is public, so it may be
cloned and modified. If interested in modifying or contributing to HAT, please see information on the Development page and contact Joshua Pickard at jpic@umich.edu.

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

Tutorials

This page contains a series of tutorials for using HAT. Every tutorial is available in both Python and MATLAB.

Python

Each Python tutorial open as a Google CoLab notebook and can be run online. You need to be logged into a google account in order to
access the notebooks. The links below may open to seemingly large .txt documents, in which case there will be a button near the top
to open the links in CoLab. Additionally, the tutorials can be downloaded from the links and run locally as a jupyter notebook as well.

	Introduction to HAT in Python [https://drive.google.com/file/d/17zxsB8kW8-bjJUGyXGm9vxDzYrIQa7mW/view?usp=share_link]

	Constructing Hypergraphs from Multicorrealtions [https://drive.google.com/file/d/1m4fYOhRrYYgT1wFGwY9SPcMXXk2aqQTR/view?usp=share_link]

MATLAB

Each MATLAB tutorial opens to MATLAB Online. If you have a MATLAB account you can run it online. Otherwise, you can download the tutorial file from MATLAB Online and run it as a live script locally.

	Introduction to HAT in MATLAB [https://drive.matlab.com/sharing/7d77b042-c3cb-4ae9-8c06-515089fbccef]

	Constructing Hypergraphs from Multicorrealtions [https://drive.matlab.com/sharing/999692ae-26df-4b34-9cd4-c31af10d0bc3]

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

HAT Documentation

Submodules

HAT.Hypergraph module

	
class HAT.Hypergraph.Hypergraph(im, ew=None, nw=None)

	Bases: object

This is the base class representing a Hypergraph object. It is the primary entry point and
provides an interface to functions implemented in HAT’s other modules. The underlying data
structure of this class is an incidence matrix, but many methods exploit tensor representation
of uniform hypergraphs.

Formally, a Hypergraph \(H=(V,E)\) is a set of vertices \(V\) and a set of edges \(E\)
where each edge \(e\in E\) is defined \(e\subseteq V.\) In contrast to a graph, a hypergraph
edge \(e\) can contain any number of vertices, which allows for efficient representation of multi-way
relationships.

In a uniform Hypergraph, all edges contain the same number of vertices. Uniform hypergraphs are represnted
as tensors, which precisely model multi-way interactions.

	Parameters:

	
	im – Incidence matrix

	ew – Edge weight vector

	nw – Node weight vector

	
draw(shadeRows=True, connectNodes=True, dpi=200, edgeColors=None)

	This function draws the incidence matrix of the hypergraph object. It calls the function
HAT.draw.incidencePlot, but is provided to generate the plot directly from the object.

	Parameters:

	
	shadeRows – shade rows (bool)

	connectNodes – connect nodes in each hyperedge (bool)

	dpi – the resolution of the image (int)

	edgeColors – The colors of edges represented in the incidence matrix. This is random by default

	Returns:

	matplotlib axes with figure drawn on to it

	
dual()

	The dual hypergraph is constructed.

	Returns:

	Hypergraph object

	Return type:

	Hypergraph

Let \(H=(V,E)\) be a hypergraph. In the dual hypergraph each original edge \(e\in E\)
is represented as a vertex and each original vertex \(v\in E\) is represented as an edge. Numerically, the
transpose of the incidence matrix of a hypergraph is the incidence matrix of the dual hypergraph.

References

[1]
Yang, Chaoqi, et al. “Hypergraph learning with line expansion.” arXiv preprint arXiv:2005.04843 (2020).

	
cliqueGraph()

	The clique expansion graph is constructed.

	Returns:

	Clique expanded graph

	Return type:

	networkx.graph

The clique expansion algorithm constructs a graph on the same set of vertices as the hypergraph by defining an
edge set where every pair of vertices contained within the same edge in the hypergraph have an edge between them
in the graph. Given a hypergraph \(H=(V,E_h)\), then the corresponding clique graph is \(C=(V,E_c)\) where
\(E_c\) is defined

\[E_c = \{(v_i, v_j) |\ \exists\ e\in E_h \text{ where } v_i, v_j\in e\}.\]

This is called clique expansion because the vertices contained in each \(h\in E_h\) forms a clique in \(C\).
While the map from \(H\) to \(C\) is well-defined, the transformation to a clique graph is a lossy process,
so the hypergraph structure of \(H\) cannot be uniquely recovered from the clique graph \(C\) alone [1].

References

[*]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

[†]
Yang, Chaoqi, et al. “Hypergraph learning with line expansion.” arXiv preprint arXiv:2005.04843 (2020).

	
lineGraph()

	The line graph, which is the clique expansion of the dual graph, is constructed.

	Returns:

	Line graph

	Return type:

	networkx.graph

References

[1]
Yang, Chaoqi, et al. “Hypergraph learning with line expansion.” arXiv preprint arXiv:2005.04843 (2020).

	
starGraph()

	The star graph representation is constructed.

	Returns:

	Star graph

	Return type:

	networkx.graph

The star expansion of \({H}=({V},{E}_h)\) constructs a bipartite graph \({S}=\{{V}_s,{E}_s\}\)
by introducing a new set of vertices \({V}_s={V}\cup {E}_h\) where some vertices in the star graph
represent hyperedges of the original hypergraph. There exists an edge between each vertex \(v,e\in {V}_s\)
when \(v\in {V}\), \(e\in {E}_h,\) and \(v\in e\). Each hyperedge in \({E}_h\) induces
a star in \(S\). This is a lossless process, so the hypergraph structure of \(H\) is well-defined]
given a star graph \(S\).

References

[1]
Yang, Chaoqi, et al. “Hypergraph learning with line expansion.” arXiv preprint arXiv:2005.04843 (2020).

	
laplacianMatrix(type='Bolla')

	This function returns a version of the higher order Laplacian matrix of the hypergraph.

	Parameters:

	type (str, optional) – Indicates which version of the Laplacin matrix to return. It defaults to Bolla [1], but Rodriguez [2,3] and Zhou [4] are valid arguments as well.

	Returns:

	Laplacian matrix

	Return type:

	ndarray

Several version of the hypergraph Laplacian are defined in [1-4]. These aim to capture
the higher order structure as a matrix. This function serves as a wrapper to call functions
that generate different specific Laplacians (See bollaLaplacian(), rodriguezLaplacian(),
and zhouLaplacian()).

References

[1]
Bolla, M. (1993). Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathematics, 117.
https://www.sciencedirect.com/science/article/pii/0012365X9390322K

[2]
Rodriguez, J. A. (2002). On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear and Multilinear Algebra, 50(1), 1-14.
https://www.tandfonline.com/doi/abs/10.1080/03081080290011692

[3]
Rodriguez, J. A. (2003). On the Laplacian spectrum and walk-regular hypergraphs. Linear and Multilinear Algebra, 51, 285–297.
https://www.tandfonline.com/doi/abs/10.1080/0308108031000084374

[4]
Zhou, D., Huang, J., & Schölkopf, B. (2005). Beyond pairwise classification and clustering using hypergraphs. (Equation 3.3)
https://dennyzhou.github.io/papers/hyper_tech.pdf

	
bollaLaplacian()

	This function constructs the hypergraph Laplacian according to [1].

	Returns:

	Bolla Laplacian matrix

	Return type:

	ndarray

References

[1]
Bolla, M. (1993). Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathematics, 117.
https://www.sciencedirect.com/science/article/pii/0012365X9390322K

	
rodriguezLaplacian()

	This function constructs the hypergraph Laplacian according to [1, 2].

	Returns:

	Rodriguez Laplacian matrix

	Return type:

	ndarray

References

[1]
Rodriguez, J. A. (2002). On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear and Multilinear Algebra, 50(1), 1-14.
https://www.tandfonline.com/doi/abs/10.1080/03081080290011692

[2]
Rodriguez, J. A. (2003). On the Laplacian spectrum and walk-regular hypergraphs. Linear and Multilinear Algebra, 51, 285–297.
https://www.tandfonline.com/doi/abs/10.1080/0308108031000084374

	
zhouLaplacian()

	This function constructs the hypergraph Laplacian according to [1].

	Returns:

	Zhou Laplacian matrix

	Return type:

	ndarray

References

[1]
Zhou, D., Huang, J., & Schölkopf, B. (2005). Beyond pairwise classification and clustering using hypergraphs. (Equation 3.3)
https://dennyzhou.github.io/papers/hyper_tech.pdf

	
adjTensor()

	This constructs the adjacency tensor for uniform hypergraphs.

	Returns:

	Adjacency Tensor

	Return type:

	ndarray

The adjacency tensor \(A\) of a \(k-`order hypergraph :math:`H\) is the multi-way, hypergraph analog of the pairwise, graph
adjacency matrix. It is defined as a \(k-\) mode tensor (\(k-\) dimensional matrix):

\[\begin{split}A \in \mathbf{R}^{ \overbrace{n \times \dots \times n}^{k \text{ times}}} \text{ where }{A}_{j_1\dots j_k} = \begin{cases} \frac{1}{(k-1)!} & \text{if }(j_1,\dots,j_k)\in {E}_h \\ 0 & \text{otherwise} \end{cases},\end{split}\]

as found in equation 8 of [1].

References

[1]
C. Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020)
(Equation 8) https://arxiv.org/pdf/1912.09624.pdf

	
degreeTensor()

	This constructs the degree tensor for uniform hypergraphs.

	Returns:

	Degree Tensor

	Return type:

	ndarray

The degree tensor \(D\) is the hypergraph analog of the degree matrix. For a \(k-\) order hypergraph
\(H=(V,E)\) the degree tensor \(D\) is a diagonal supersymmetric tensor defined

\[D \in \mathbf{R}^{ \overbrace{n \times \dots \times n}^{k \text{ times}}} \text{ where }{D}_{i\dots i} = degree(v_i) \text{ for all } v_i\in V\]

References

[1]
C. Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020)
https://arxiv.org/pdf/1912.09624.pdf

	
laplacianTensor()

	This constructs the Laplacian tensor for uniform hypergraphs.

	Returns:

	Laplcian Tensor

	Return type:

	ndarray

The Laplacian tensor is the tensor analog of the Laplacian matrix for graphs, and it is
defined equivalently. For a hypergraph \(H=(V,E)\) with an adjacency tensor \(A\)
and degree tensor \(D\), the Laplacian tensor is

\[L = D - A\]

References

[1]
C. Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020)
(Equation 9) https://arxiv.org/pdf/1912.09624.pdf

	
tensorEntropy()

	Computes hypergraph entropy based on the singular values of the Laplacian tensor.

	Returns:

	tensor entropy

	Return type:

	float

Uniform hypergraph entropy is defined as the entropy of the higher order singular
values of the Laplacian matrix [1].

References

[1]
C. Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS
ON NETWORK SCIENCE AND ENGINEERING (2020) (Definition 7, Algorithm 1)
https://arxiv.org/pdf/1912.09624.pdf

	
matrixEntropy(type='Rodriguez')

	Computes hypergraph entropy based on the eigenvalues values of the Laplacian matrix.

	Parameters:

	type (str, optional) – Type of hypergraph Laplacian matrix. This defaults to ‘Rodriguez’ and other
choices inclue Bolla and Zhou (See: laplacianMatrix()).

	Returns:

	Matrix based hypergraph entropy

	Return type:

	float

Matrix entropy of a hypergraph is defined as the entropy of the eigenvalues of the
hypergraph Laplacian matrix [1]. This may be applied to any version of the Laplacian matrix.

References

[1]
C. Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020)
(Equation 1) https://arxiv.org/pdf/1912.09624.pdf

	
avgDistance()

	Computes the average pairwise distance between any 2 vertices in the hypergraph.

	Returns:

	avgDist

	Return type:

	float

The hypergraph is clique expanded to a graph object, and the average shortest path on
the clique expanded graph is returned.

	
ctrbk(inputVxc)

	Compute the reduced controllability matrix for \(k-\) uniform hypergraphs.

	Parameters:

	inputVxc (ndarray) – List of vertices that may be controlled

	Returns:

	Controllability matrix

	Return type:

	ndarray

References

[1]
Chen C, Surana A, Bloch A, Rajapakse I. “Controllability of Hypergraphs.”
IEEE Transactions on Network Science and Engineering, 2021. https://drive.google.com/file/d/12aReE7mE4MVbycZUxUYdtICgrAYlzg8o/view

	
bMatrix(inputVxc)

	Constructs controllability \(B\) matrix commonly used in the linear control system

\[\frac{dx}{dt} = Ax+Bu\]

	Parameters:

	inputVxc (ndarray) – a list of input control nodes

	Returns:

	control matrix

	Return type:

	ndarray

References

[1]
Can Chen, Amit Surana, Anthony M Bloch, and Indika Rajapakse. Controllability of hypergraphs. IEEE Transactions
on Network Science and Engineering, 8(2):1646–1657, 2021. https://drive.google.com/file/d/12aReE7mE4MVbycZUxUYdtICgrAYlzg8o/view

	
clusteringCoef()

	Computes clustering average clustering coefficient of the hypergraph.

	Returns:

	average clustering coefficient

	Return type:

	float

For a uniform hypergraph, the clustering coefficient of a vertex \(v_i\)
is defined as the number of edges the vertex participates in (i.e. \(deg(v_i)\)) divided
by the number of \(k-`way edges that could exist among vertex :math:`v_i\) and its neighbors
(See equation 31 in [1]). This is written

\[C_i = \frac{deg(v_i)}{\binom{|N_i|}{k}}\]

where \(N_i\) is the set of neighbors or vertices adjacent to \(v_i\). The hypergraph
clustering coefficient computed here is the average clustering coefficient for all vertices,
written

\[C=\sum_{i=1}^nC_i\]

References

[1]
Surana, Amit, Can Chen, and Indika Rajapakse. “Hypergraph Similarity Measures.”
IEEE Transactions on Network Science and Engineering (2022).
https://drive.google.com/file/d/1JUYIQ2_u9YX7ky0U7QptUbJyjEMSYNNR/view

	
centrality(tol=0.0001, maxIter=3000, model='LogExp', alpha=10)

	Computes node and edge centralities.

	Parameters:

	
	tol (int, optional) – threshold tolerance for the convergence of the centrality measures, defaults to 1e-4

	maxIter (int, optional) – maximum number of iterations for the centrality measures to converge in, defaults to 3000

	model (str, optional) – the set of functions used to compute centrality. This defaults to ‘LogExp’, and other choices include
‘Linear’, ‘Max’ or a list of 4 custom function handles (See [1]).

	alpha (int, optional) – Hyperparameter used for computing centrality (See [1]), defaults to 10

	Returns:

	vxcCentrality

	Return type:

	ndarray containing centrality scores for each vertex in the hypergraph

	Returns:

	edgeCentrality

	Return type:

	ndarray containing centrality scores for each edge in the hypergraph

References

[1]
Tudisco, F., Higham, D.J. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun Phys 4, 201 (2021). https://doi.org/10.1038/s42005-021-00704-2

HAT.HAT module

	
HAT.HAT.directSimilarity(HG1, HG2, measure='Hamming')

	This function computes the direct similarity between two uniform hypergraphs.

	Parameters:

	
	HG1 (Hypergraph) – Hypergraph 1

	HG2 (Hypergraph) – Hypergraph 2

	measure (str, optional) – This sepcifies which similarity measure to apply. It defaults to
Hamming, and Spectral-S and Centrality are available as other options
as well.

	Returns:

	Hypergraph similarity

	Return type:

	float

References

[1]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

	
HAT.HAT.indirectSimilarity(G1, G2, measure='Hamming', eps=0.01)

	This function computes the indirect similarity between two hypergraphs.

	Parameters:

	
	G1 (nx.Graph or ndarray) – Hypergraph 1 expansion

	G2 (nx.Graph or ndarray) – Hypergraph 2 expansion

	measure (str, optional) – This specifies which similarity measure to apply. It defaults to Hamming , and
Jaccard , deltaCon , Spectral , and Centrality are provided as well. When Centrality
is used as the similarity measure, G1 and G2 should ndarray s of centrality values; Otherwise
G1 and G2 are nx.Graph*s or *ndarray* s as adjacency matrices.

	eps (float, optional) – a hyperparameter required for deltaCon similarity, defaults to 10e-3

	Returns:

	similarity measure

	Return type:

	float

References

[1]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

	
HAT.HAT.multicorrelations(D, order, mtype='Drezner', idxs=None)

	This function computes the multicorrelation among pairwise or 2D data.

	Parameters:

	
	D (ndarray) – 2D or pairwise data

	order (int) – order of the multi-way interactions

	mtype (str) – This specifies which multicorrelation measure to use. It defaults to
Drezner [1], but Wang [2] and Taylor [3] are options as well.

	idxs (ndarray, optional) – specify which indices of D to compute multicorrelations of. The default is None, in which case
all combinations of order indices are computed.

	Returns:

	A vector of the multicorrelation scores computed and a vector of the column indices of
D used to compute each multicorrelation.

	Return type:

	(ndarray, ndarray)

References

[1]
Zvi Drezner. Multirelation—a correlation among more than two variables. Computational Statistics & Data Analysis, 19(3):283–292, 1995.

[2]
Jianji Wang and Nanning Zheng. Measures of correlation for multiple variables. arXiv preprint arXiv:1401.4827, 2014.

[3]
Benjamin M Taylor. A multi-way correlation coefficient. arXiv preprint arXiv:2003.02561, 2020.

	
HAT.HAT.uniformErdosRenyi(v, e, k)

	This function generates a uniform, random hypergraph.

	Parameters:

	
	v (int) – number of vertices

	e (int) – number of edges

	k (int) – order of hypergraph

	Returns:

	Hypergraph

	Return type:

	Hypergraph

	
HAT.HAT.load(dataset='Karate')

	This function loads built-in datasets. Currently only one dataset is available and we are working to expand this.

	Parameters:

	dataset (str, optional) – sets which dataset to load in, defaults to ‘Karate’

	Returns:

	incidence matrix or graph object

	Return type:

	ndarray or nx.Graph

	
HAT.HAT.hyperedges2IM(edgeSet)

	This function constructs an incidence matrix from an edge set.

	Parameters:

	edgeSet (ndarray) – a \(e \times k\) matrix where each row contains \(k\) integers that are contained within the same hyperedge

	Returns:

	a \(n imes e\) incidence matrix where each row of the edge set corresponds to a column of the incidence matrix. \(n\) is the number of nodes contained in the edgeset.

	Return type:

	ndarray

	
HAT.HAT.hyperedgeHomophily(H, HG=None, G=None, method='CN')

	This function computes the hyperedge homophily score according to the below methods. The homophily score is the average score based on
structural similarity of the vertices in hypredge H in the clique expanded graph G. This function is an interface from HAT to networkx
link prediction algorithms.

	Parameters:

	
	G (networkx.Graph) – a pairwise hypergraph expansion

	H (ndarray) – hyperedge containing individual vertices within the edge

	method – specifies which structural similarity method to use. This defaults to CN common neighbors.

	
HAT.HAT.edgeRemoval(HG, p, method='Random')

	
	This function randomly removes edges from a hypergraph. In [1], four primary reasons are given for data missing in pairwise networks:
	
	random edge removal

	right censoring

	snowball effect

	cold-ends

This method removes edes from hypergraphs according to the multi-way analogue of these.

References

[1]
Yan, Bowen, and Steve Gregory. “Finding missing edges and communities in incomplete networks.” Journal of Physics A: Mathematical and Theoretical
44.49 (2011): 495102.

[2]
Zhu, Yu-Xiao, et al. “Uncovering missing links with cold ends.” Physica A: Statistical Mechanics and its Applications 391.22 (2012): 5769-5778.

	
HAT.HAT.randomRemoval(HG, p)

	

	
HAT.HAT.rightCensorRemoval(HG, p)

	

	
HAT.HAT.coldEndsRemoval(HG, p)

	

	
HAT.HAT.snowBallRemoval(HG, p)

	

HAT.draw module

	
HAT.draw.incidencePlot(H, shadeRows=True, connectNodes=True, dpi=200, edgeColors=None)

	Plot the incidence matrix of a hypergraph.

	Parameters:

	
	H – a HAT.hypergraph object

	shadeRows – shade rows (bool)

	connectNodes – connect nodes in each hyperedge (bool)

	dpi – the resolution of the image (int)

	edgeColors – The colors of edges represented in the incidence matrix. This is random by default

	Returns:

	matplotlib axes with figure drawn on to it

HAT.multilinalg module

	
HAT.multilinalg.hosvd(T, M=True, uniform=False, sym=False)

	Higher Order Singular Value Decomposition

	Parameters:

	
	uniform – Indicates if T is a uniform tensor

	sym – Indicates if T is a super symmetric tensor

	M – Indicates if the factor matrices are required as well as the core tensor

	Returns:

	The singular values of the core diagonal tensor and the factor matrices.

	
HAT.multilinalg.supersymHosvd(T)

	Computes the singular values of a uniform, symetric tensor. See Algorithm 1 in [1].

	Parameters:

	T – A uniform, symmetric multidimensional array

	Returns:

	The singular values that compose the core tensor of the HOSVD on T.

References

[1]

	Chen and I. Rajapakse, Tensor Entropy for Uniform Hypergraphs, IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020)

	
HAT.multilinalg.HammingSimilarity(A1, A2)

	Computes the Spectral-S similarity of 2 Adjacency tensors [1].

	Parameters:

	
	A1 (ndarray) – adjacency tensor 1

	A2 (ndarray) – adjacency tensor 2

	Returns:

	Hamming similarity measure

	Return type:

	float

References

[1]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

	
HAT.multilinalg.SpectralHSimilarity(L1, L2)

	Computes the Spectral-S similarity of 2 Laplacian tensors [1].

	Parameters:

	
	L1 (ndarray) – Laplacian tensor 1

	L2 (ndarray) – Laplacian tensor 2

	Returns:

	Spectral-S similarity measure

	Return type:

	float

References

[1]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

	
HAT.multilinalg.kronExponentiation(M, x)

	Kronecker Product Exponential.

	Parameters:

	
	M (ndarray) – a matrix

	x (int) – power of exponentiation

	Returns:

	Krnoecker Product exponentiation of M a total of x times

	Return type:

	ndarray

This function performs the Kronecker Product on a matrix \(M\) a total of
\(x\) times. The Kronecker product is defined for two matrices
\(A\in\mathbf{R}^{l \times m}, B\in\mathbf{R}^{m \times n}\) as the matrix

\[\begin{split}A \bigotimes B= \begin{pmatrix} A_{1,1}B & A_{1,2}B & \dots & A_{1,m}B \\ A_{2,1}B & A_{2,2}B & \dots & A_{2,m}B \\ \vdots & \vdots & \ddots & \vdots \\ A_{l,1}B & A_{l,2}B & \dots & A_{l,n}B \end{pmatrix}\end{split}\]

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

Hypergraph References

[1]
Amit Surana, Can Chen, and Indika Rajapakse. Hypergraph similarity measures. IEEE Transactions on Network Science and Engineering, pages 1-16, 2022.

[2]
Zvi Drezner. Multirelation—a correlation among more than two variables. Computational Statistics & Data Analysis, 19(3):283–292, 1995.

[3]
Jianji Wang and Nanning Zheng. Measures of correlation for multiple variables. arXiv preprint arXiv:1401.4827, 2014.

[4]
Benjamin M Taylor. A multi-way correlation coefficient. arXiv preprint arXiv:2003.02561, 2020.

[5]
Yang, Chaoqi, et al. “Hypergraph learning with line expansion.” arXiv preprint arXiv:2005.04843 (2020).

[6]
Bolla, M. (1993). Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathematics, 117. https://www.sciencedirect.com/science/article/pii/0012365X9390322K

[7]
Rodriguez, J. A. (2002). On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear and Multilinear Algebra, 50(1), 1-14. https://www.tandfonline.com/doi/abs/10.1080/03081080290011692

[8]
Rodriguez, J. A. (2003). On the Laplacian spectrum and walk-regular hypergraphs. Linear and Multilinear Algebra, 51, 285–297. https://www.tandfonline.com/doi/abs/10.1080/0308108031000084374

[9]
Zhou, D., Huang, J., & Schölkopf, B. (2005). Beyond pairwise classification and clustering using hypergraphs. (Equation 3.3) https://dennyzhou.github.io/papers/hyper_tech.pdf

[10]
Can Chen and Indika Rajapakse. Tensor Entropy for Uniform Hypergraphs. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING (2020) https://arxiv.org/pdf/1912.09624.pdf

[11]
Chen C, Surana A, Bloch A, Rajapakse I. “Controllability of Hypergraphs.” IEEE Transactions on Network Science and Engineering, 2021. https://drive.google.com/file/d/12aReE7mE4MVbycZUxUYdtICgrAYlzg8o/view

[12]
Tudisco, F., Higham, D.J. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun Phys 4, 201 (2021). https://doi.org/10.1038/s42005-021-00704-2

[13]
Joshua Pickard, Amit Surana, Anthony Bloch, and Indika Rajapakse. Observability of Hypergraphs. arXiv preprint arXiv:2304.04883 (2023). https://arxiv.org/pdf/2304.04883.pdf

 Development

Development

This page contains the goals for the next version of HAT. To contribute, for information on the below, or to request specific features in HAT, please contact us at jpic@umich.edu

Software Development

	Automated testing of software

	Increased number of tutorial

	Increased number of hypergraph visualization methods

	Add hyperlink prediction module

	Include built-in hypergraphs

Hypergraph Methods Development

	Directed hypergraphs

	Nonuniform hypergraphs

	Large hypergraph constructions

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

 Python Module Index

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 HAT	

 	
 	
 HAT.draw	

 	
 	
 HAT.HAT	

 	
 	
 HAT.Hypergraph	

 	
 	
 HAT.multilinalg	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | H
 | I
 | K
 | L
 | M
 | R
 | S
 | T
 | U
 | Z

A

 	
 	adjTensor() (HAT.Hypergraph.Hypergraph method)

 	
 	avgDistance() (HAT.Hypergraph.Hypergraph method)

B

 	
 	bMatrix() (HAT.Hypergraph.Hypergraph method)

 	
 	bollaLaplacian() (HAT.Hypergraph.Hypergraph method)

C

 	
 	centrality() (HAT.Hypergraph.Hypergraph method)

 	cliqueGraph() (HAT.Hypergraph.Hypergraph method)

 	
 	clusteringCoef() (HAT.Hypergraph.Hypergraph method)

 	coldEndsRemoval() (in module HAT.HAT)

 	ctrbk() (HAT.Hypergraph.Hypergraph method)

D

 	
 	degreeTensor() (HAT.Hypergraph.Hypergraph method)

 	directSimilarity() (in module HAT.HAT)

 	
 	draw() (HAT.Hypergraph.Hypergraph method)

 	dual() (HAT.Hypergraph.Hypergraph method)

E

 	
 	edgeRemoval() (in module HAT.HAT)

H

 	
 	HammingSimilarity() (in module HAT.multilinalg)

 	
 HAT.draw

 	module

 	
 HAT.HAT

 	module

 	
 HAT.Hypergraph

 	module

 	
 	
 HAT.multilinalg

 	module

 	hosvd() (in module HAT.multilinalg)

 	hyperedgeHomophily() (in module HAT.HAT)

 	hyperedges2IM() (in module HAT.HAT)

 	Hypergraph (class in HAT.Hypergraph)

I

 	
 	incidencePlot() (in module HAT.draw)

 	
 	indirectSimilarity() (in module HAT.HAT)

K

 	
 	kronExponentiation() (in module HAT.multilinalg)

L

 	
 	laplacianMatrix() (HAT.Hypergraph.Hypergraph method)

 	laplacianTensor() (HAT.Hypergraph.Hypergraph method)

 	
 	lineGraph() (HAT.Hypergraph.Hypergraph method)

 	load() (in module HAT.HAT)

M

 	
 	matrixEntropy() (HAT.Hypergraph.Hypergraph method)

 	
 module

 	HAT.draw

 	HAT.HAT

 	HAT.Hypergraph

 	HAT.multilinalg

 	
 	multicorrelations() (in module HAT.HAT)

R

 	
 	randomRemoval() (in module HAT.HAT)

 	
 	rightCensorRemoval() (in module HAT.HAT)

 	rodriguezLaplacian() (HAT.Hypergraph.Hypergraph method)

S

 	
 	snowBallRemoval() (in module HAT.HAT)

 	SpectralHSimilarity() (in module HAT.multilinalg)

 	
 	starGraph() (HAT.Hypergraph.Hypergraph method)

 	supersymHosvd() (in module HAT.multilinalg)

T

 	
 	tensorEntropy() (HAT.Hypergraph.Hypergraph method)

U

 	
 	uniformErdosRenyi() (in module HAT.HAT)

Z

 	
 	zhouLaplacian() (HAT.Hypergraph.Hypergraph method)

 Controllability

Controllability

Hypergraph controlability properties are computed based on ``Tensor Entropy of Uniform Hypergraphs.”

 Data

Data

Development is underway for HAT to contain a set of built in multi-way datasets.
This is intended to provide examples for potential applications and ways to apply
hypergraph theory in different domains.

We are in the process of identifying and including various data to put inside of HAT, and
we welcome any and all suggestions. This development is managed from a separate branch
located here [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/tree/data].

Data Sets

The following types of data are planned to be included in the next release of HAT.

	Pore-C networks

	Co-citation and co-reference networks

	Co-purchasing networks

	Communications networks

	Language networks

Bug Reporting

Please report all bugs or defects in HAT to this page [https://github.com/Jpickard1/Hypergraph-Analysis-Toolbox/issues].

 Decompositions

Decompositions

Initial hyper graph

[image: _images/GH.png]

Higher Order Decompositions

Adjacency Tensor

Line Graph

[image: _images/GL.png]

Pairwise Decompositions

Clique Expansion

[image: _images/GC.png]
Star Graphs:

[image: _images/GS.png]

 Introduction

Introduction

Hypergraph Analysis Tolbox (HAT) is a software suite for analyzing higher order structures. HAT is implemented
in Python and Matlab. There are 5 main modules of HAT including:

	Visualization

	Hypergraph Properties

	Controlability

	Similarity Measures

	Decompositions

 HAT

HAT

	HAT Documentation
	Submodules

	HAT.Hypergraph module
	Hypergraph
	Hypergraph.draw()

	Hypergraph.dual()

	Hypergraph.cliqueGraph()

	Hypergraph.lineGraph()

	Hypergraph.starGraph()

	Hypergraph.laplacianMatrix()

	Hypergraph.bollaLaplacian()

	Hypergraph.rodriguezLaplacian()

	Hypergraph.zhouLaplacian()

	Hypergraph.adjTensor()

	Hypergraph.degreeTensor()

	Hypergraph.laplacianTensor()

	Hypergraph.tensorEntropy()

	Hypergraph.matrixEntropy()

	Hypergraph.avgDistance()

	Hypergraph.ctrbk()

	Hypergraph.bMatrix()

	Hypergraph.clusteringCoef()

	Hypergraph.centrality()

	HAT.HAT module
	directSimilarity()

	indirectSimilarity()

	multicorrelations()

	uniformErdosRenyi()

	load()

	hyperedges2IM()

	hyperedgeHomophily()

	edgeRemoval()

	randomRemoval()

	rightCensorRemoval()

	coldEndsRemoval()

	snowBallRemoval()

	HAT.draw module
	incidencePlot()

	HAT.multilinalg module
	hosvd()

	supersymHosvd()

	HammingSimilarity()

	SpectralHSimilarity()

	kronExponentiation()

	Bug Reporting

 Hypergraph Properties

Hypergraph Properties

HAT implements computations for a series of standard graph and hypergraph theoretic properties. These properties are computed on
either hypergraph or graph objects, which are created based on incidence and adjacency matrices respectively.

H = HAT.hypergraph.hypergraph(W) # Create a hypergraph with an incidence matrix W
G = HAT.graph.graph(A) # Create a graph with an adjacency matrix A

Diameter

The diameter is defined as the maximum minimum distance between any two vertices in a graph or hypergraph.

diameter = H.diameter

Clustering Coefficient

The clustering coefficient of a graph or hypergraph is the average clustering coefficient of all vertices. For
any given vertex, the vertex clustering coefficient is calculated as

gamma = H.clusteringCoefficient # Hypergraph clustering coeffficient
gammaI = H.clusteringCoefficient(i) # Clustering coefficient of vertex i

Average Distance

The average distance is the pairwise distance between any two vertices.

avgDistane = H.averageDistance

	Diameter

	Clustering Coefficient

	Average Distance

	etc.

 Similarity Measures

Similarity Measures

Hypdergraph similariy measures are computed based on ``Hypergraph Dissimilarity Measures.”

Direct Measures

These measures transform uniform hypergraphs to tensors and apply tensor based measures to compare hypergraphs.

Indirect Measures

These measures decompose the hypergraph to a pairwise tructure and apply standard measures on the pairwise objects.

 Visualization

Visualization

Incidence matrix visualization is based on Paohvis.

[image: Incidence Matrix Visualization]

_static/index_dyadic_decomp.png

_static/minus.png

_static/vis.png
ooooo

_static/plus.png

_images/GC.png

_images/GH.png

_images/GL.png

_images/GS.png
o o

& @

_images/IncidenceMatrix.png
Vertices.

Incidence Matrix

Fiyperedges

nav.xhtml

 Table of Contents

 		
 Hypergraph Analysis Toolbox

 		
 Installation

 		
 Python Distribution

 		
 MATLAB Distribution

 		
 Development Distribution

 		
 Bug Reporting

 		
 Tutorials

 		
 Python

 		
 MATLAB

 		
 Bug Reporting

 		
 HAT Documentation

 		
 Submodules

 		
 HAT.Hypergraph module

 		
 Hypergraph

 		
 HAT.HAT module

 		
 directSimilarity()

 		
 indirectSimilarity()

 		
 multicorrelations()

 		
 uniformErdosRenyi()

 		
 load()

 		
 hyperedges2IM()

 		
 hyperedgeHomophily()

 		
 edgeRemoval()

 		
 randomRemoval()

 		
 rightCensorRemoval()

 		
 coldEndsRemoval()

 		
 snowBallRemoval()

 		
 HAT.draw module

 		
 incidencePlot()

 		
 HAT.multilinalg module

 		
 hosvd()

 		
 supersymHosvd()

 		
 HammingSimilarity()

 		
 SpectralHSimilarity()

 		
 kronExponentiation()

 		
 Bug Reporting

 		
 Hypergraph References

 		
 Bug Reporting

 		
 Development

 		
 Software D